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ABSTRACT

Expressions have been derived for the impedance of biconical
and cylindrical dipoles in a warm isotropic plasma. A linearized
hydrodynamic descripticon was used as a plasma model. Collisions were
neglected throughout as they should modify only the quantitative
effects and not the qualitative effects of "plasmé" waves on impedance.
In determining the impedance of a cylindrical dipole in intimate
contact with a plasma, the effect of the induced acoustic sources
(force and fluid flux distributions) on the antenna surface must be
accounted for in addition to the effects of the induced current
distribution. This was accomplished by derivation of a suitable
stationary formula for impedance which accounts for the effects of
all the induced sources. The main advantage of this type of formu-
lation is that it is only necessary to know the functional form of
the induced sources and not their relative magnitudes in order to ob-
tain impedance values. This, of course, is an inherent property of the
variational formulation. In general, the effect of the acoustic sources
on impedance was found to be quite small, except 1in certain instances.
In the treatment of a biconical dipole the antenna was assumed
to be encased in an insulating dielectric which is immersed in a
plasma. For this model an exact expression was derived for the
terminal admittance for very thin antennas. TFor wide angle dipoles
a variational expression, which depends on the aperture tangential
electric field, was derived. The admittance was found to be strongly

dependent on the ratio of the velocity of light in free space to the
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acoustic velocity in the plasma. Compressibility effects seem to be
quite significant if the acoustical '"phase length" of the antenna is
approximately 20 or less. The presence of an ion sheath decreased

the power radiated in the ''plasma" wave.
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I. INTRODUCTION

When an antenna is immersed in some medium other than free space,
its impedance characteristics and radiation pattern may undergo quite
radical changes depending on the characteristics of the media. If
the antenna is part of a communication system, its impedance should
be matched to the energy source for efficient power transfer. If it
is to be used as a probe to study the media, its impedance properties
must be well known. The extensive space programs now in progress
have led to many investigations of electromagnetic propagation in a
plasma medium. In this work the impedance properties of some dipole
antennas in a warm plasma will be discussed.

It is a well-known fact, at present, that a warm plasma supports
essentially two types of wave motion, that is, transverse "electro-
magnetic" waves and longitudinal "plasma" or acoustic waves. In this
work the impedance properties of a biconical dipole encased in a
dielectric and then immersed in a warm plasma is discussed in addi-
tion to a cylindrical dipole in intimate contact with a warm plasma.

Whale (1963, 1964) has observed experimentally the excitation of
acoustic and EM waves by rocket-borne antennas in the ionosphere.
Field (1956) investigated a purely longitudinal (acoustic) wave inci-
dent on a plasma-free space interface which excites both EM and
acoustic waves. He found that in some cases the EM wave excited in
the free space region carries an appreciable amount of power and
suggested that this mechanism was responsible for radio emission

from solar corona. In a similar work Wait (1966 a) solved the problem



of an acoustic point source in a plasma bubble and found the EM power
radiated was at best a small fraction of the original source acoustic
power.

Hessel and Shmoys (1962) derived a pair of uncoupled wave
equations for the EM and acoustic waves in a warm plasma and indicated
there would be coupling between the two only at a discontinuity in the
plasma; however, both electric and acoustic sources can, in general,
generate both types of waves. For an electric dipole they found the
ratio of the power radiated in the acoustic wave to that in the EM
wave (Pp/Pe) to be proportional to (c/u)3 where ¢ is the velocity of
light and u the velocity of sound in the plasma. However, they
obtained quite different results for a prescribed current distribution
on a rigid sphere. Chen (1964), on the other hand, found the ratio
Pp/Pe to be independent of c¢/u for a thin wire of finite length with
a sinusoidally distributed current with a propagation constant iden-
tical to that of EM waves in the plasma. Seshadri (1965) also found
Pp/Pe proportional to (c/u)3 for a two-component plasma. Wait (1964)
and Wait and Spies (1966) investigated the impedance of an infini-
tesimal slotted sphere in a warm plasma. He presented values for
G (conductance) and AB, the change from the free space susceptance,
and found acoustic effects to be quite significant in some cases.
Fejer (1964) considered a dipole composed of two antiphase excited
charged oscillating spheres and obtained results similar to Wait's
for acoustically large antennas. Galejs (1966) considered a slotted
plane backed by a rectangular waveguide radiating into a stratified

warm plasma and derived a variational expression for the slot




admittance. Seshadri (1965b) considered a dipole surrounded by a
cylindrical column of insulation and found the power transferred to
the acoustic wave to be strongly decreased with increasing sheath
thickness. Wait and Spies (1966) and Galejs (1966) observed the same
phenomena for increasing ion sheath sizes.

In a series of three papers Cohen (1961, 1962) extended the
equivalent source concept to a warm plasma and derived field discon-
tinuities for given source distributions. Cohen (1962) also considered
the antenna problem and stated that the acoustic source distribution
in addition to the current distribution along the antenna contributes
to impedance. Balmain (1965) treated the problem of an electrically
short antenna with a triangular current distribution in a warm plasma
and considered only the effect of electric sources on impedance.

Kuehl (1966) studied the same problem but solved the Boltzmann equation
instead of using the simpler hydrodynamic plasma description. An
interesting result of his work is the existence of a real part for the
impedance for frequencies less than the plasma frequency. Cook and
Edgar (1966) found that the current distribution along an antenna in

a warm plasma exhibits both EM and acoustical properties. They then
considered the contribution of this current distribution to radiation
resistance. Seshadri (1965 c) and Wait (1966 b) investigated the
infinite cylindrical dipole fed by a delta function source in a warm
plasma. Seshadri (1965 d) and Galejs (1965) have investigated the prop-
agation constants for the current distribution along an infinitely
long cylinder in a warm plasma and found it to contain terms identi-

fiable with EM and acoustic waves.



It is evident from the references cited above that there has been
a great deal of work done on antenna impedance in a warm plasma. How-

ever, none of these have treated the effect of acoustic sources on the

impedance of a cylindrical dipole. In this work, the effect of acoustic

sources on impedance is discussed.

Stationary formulas are one possible approach which have been
used to compute antenna impedance. For antennas in free space a
stationary formula can be derived for antenna impedance (Harrington
1961) in terms of the induced current on the antenna surface. In this
work a similar stationary expression was derived for impedance in a
warm plasma in terms of both the induced current and the force distri-
bution on the antenna surface. A convenient characteristic of
stationary formulas is their independence of the trial functions mag-
nitude. Because of this, it was possible to assume only the functional
form of the current distribution and force distributions, as the
relative weighting of their magnitudes is inherent in the stationary
formulation of the problem.

The major problem in the variational formulation is guessing the
trial functions accurately. For this reason a different antenna model
was used to obtain detailed numerical results. The biconical dipole
in free space has been investigated extensively by Schelkunoff (19u6),
Tai (1948, 1949) and Smith (1948). 1In fact, the thin biconical dipole
is one of the few antenna boundary value problems for which an "exact"
solution has been obtained. The bicone lends itself to mathematical
analysis as the region between the cones is a spherical transmission
line for which modal solutions may be derived in terms of well-known

functions.




Because of this, one would hope that a similar analysis might be
possible for a bicone in a warm plasma. Unfortunately, this is not
the case. The main difficulty arises because the propagation constants
for "plasma" and "EM" waves are different in the radial direction.
However, the analysis is mathematically tractable if one treats a
bicone surrounded by a dielectric sphere which insulates the antenna
from the plasma. For thin antennas an exact solution was obtained and
extensive numerical data is presented. The thick biconical antenna,
on the other hand, is solved only approximately by means of a varia-
tional formula, but it illustrates quite effectively the effects of

an ion sheath or insulating layer on impedance.



IT. TFORMULATION OF THE IMPEDANCE PROBLEM FOR A

CYLINDRICAL DIPOLE IN A WARM PLASMA

2.1 Basic Equations and a Statement of the Reciprocity Principle for

a Warm Plasma

It is well known at present that an antenna immersed in a warm
plasma generates both transverse electromagnetic waves and longitudinal
plasma waves. There are essentially four general types of sources
which can generate these waves (see Cohen, 1962, part II). They are
an electric current source J, a magnetic current source K, a fluid
flux source Q and a mechanical body source T, respectively.

If the single component fluid model is used for the plasma with

the assumptions that the effects of collisions are negligible, the

. . . t
drift velocity is zero, and ed?

time dependence, the basic linearized
(low-level r-f fields) equations are as given by Cohen (1962, part II)

and are repeated here for convenience:

VXE +jwum, H=-K (2-1)
VxH —jwe,E = J-n, eV (2-2)
jwmn,VrneE +VP = F (2-3)
VonV o+ jwn, = L (2-4)

where
m = electron mass
-e = electron charge

v = mean electron velocity
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n_ = average electron density (constant)
Pl = pressure deviation of electrons from the mean
n, = variation in electron density
n = n_ t n, = total electron density
Po B average electron pressure (constant)
P = Po + Pl = total pressure
u = rms velocity of electrons B plasma wave velocity (constant)
The adiabatic gas law (T«n""!) with y = 3 yields a relationship
between P and n.
A Rl
P=F, +F = <snmi +nmu €2-5)
where
=8
F’:: n, Mmu (2-6)
and

P, = = N, M o
Equations (2-1) and (2-2) are the usual Maxwell equations with an
induced source term due to the motion of charge in the plasma.
Equation (2-3) is the equation of motion and (2-4) is the continuity
(particle conservation) equation for the electron gas.

On combining equations (2-1) - (2-4) and substituting for n, by
means of equation (2-6), two separate wave equations can be derived
for H (EM waves) and Py (plasma waves). They are

VxTx R-le) W= —jweocl-x)E+va‘_J%va E @

VJ‘P, +¥e: P = V'E+i;_%_OV°5—JwM(/—X) K (28



2
Z noc
where W_= = square of the plasma frequency
P m &,

)K = (JJ;L /(JJZL

€ = g, (I=X)

Z
ho ='LA)/ﬁjéb = free space propagation constant

/S 8

- ra
k:’ = u_J__LEE =Wu & = EM wave propagation constant
C °

= plasma wave propagation constant

= (/) RS
The remaining field components are derivable from H and Pl by means
of Equations (2-1) - (2-4).

A reciprocity principle may be derived for a warm plasma in a
manner similar to that used for fields in free space. Consider two
different source distributions in the same plasma which give rise to

two sets of fields as shown in Figure 1.

T g, 32 =
K, |- H, ) _K S e
£ P FL (S
a, Iz Q A

expansion of the vector product V-(E,Kl:z_— ELX LT, +F v,~FK v, )

yields the following relationship:

V-(Ex A, -E xR +PV,-FV)=-H, K -E-T,

+ B Ky +E, T + ’?hgl-er:'—:.-‘ PR
o n

! _v_{,»/:i

o




Figure 1,

= Electron Density

-}

Geometry used in determination of reciprocity principle
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Integrating over the volume V and utilizing the divergence theorem
yields
jf(E,X A =E xH +EVy —7 )43 = —f-(-((E/'Iz__ HKe,
S %
+7 R R AV [[[ (BT -A K 0B - B & /) AV

%
Letting S tend to infinity and invoking the radiation condition of
outgoing waves at infinity yieldsl
(S (ExP-ExH +FP T, -R7V)-45 =0
S=>F

Thus, the statement of the reciprocity principle in a warm plasma is

SSCCE, T, —H KoV, *F, =B 8y /n,) dV,
VL
= EEJ(EA‘“J:,’HL'E/"'VL'F: -2 /n, )4V, (2-9
N,

The volume integrals in the above will be denoted as the reaction of
an appropriate field with an appropriate source in analogy with the

work of Rumsey (1954). The symbol

<F(I))S(2.)> = S\;ﬂ_&(él'fl-g,'lz‘i‘*_\—/;clz_ _PlQl/nu)ULVZ' (2-10)

will be called the reaction of the fields due to source 1 with source
2. Hence, in a warm isotropic plasma the reciprocity principle may

be concisely expressed as

L FU),SR)> =< F@),sU) > (2-11)

lFor anisotropic plasmas it is not immediately obvious that this type
of radiation condition is correct as the direction of energy flow

and wave propagation are not necessarily the same. This phenomenon
does not arise in a warm isotropic plasma, however.
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2.2 Variational Expression for the Impedance of a General Antenna in

a Warm Plasma

The problem geometry is shown in Figure 2a. A current source IC
is connected to two perfect electric conductors immersed in a warm
plasma and generates fields E;, HE, PC and ;g. The boundary conditions
at the surface of the conductor are assumed to be

AxE.=0, ao\7¢=a<Po_ (2-12)
where o is a constant which depends on the characteristics of the
plasma and antenna. The first of these is the usual one for tangential
electric fields at the surface of a perfect electric conductor. The
second of these was originally postulated by Cohen (1962) as being more
realistic than the usual one which requires i -+ v = o at the conductor
surface. Wait (1966 c¢) has also used this "soft wall" boundary
condition.

The antenna impedance is the gquantity of interest here. The
ideal method of determining this would be to solve Equations (2-1) -
(2-4) under the constraints of the appropriate boundary conditions
(2-12). 1In general this is impossible to do even for antennas in free
space. Hence, one must resort to approximate means for computing the
antenna impedance. ' One possible method of attack here would be to
guess the current distribution along the antenna, compute the fields
due to this current distribution in the plasma and then use the famil-

iar expression

- = z
£, = —<‘:(J))~7)/IM (2-13)

th

to compute the impedance. Note J generates both plasma and EM waves.
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This method of solution has been used by Kuehl (1966) and Balmain (1965)
to compute the impedance of a cylindrical dipole in a warm plasma.

This method, while correct (Jordan, 1950) for antennas in free
space, is of questionable validity for antennas in a warm plasma. An
antenna immersed in a warm plasma will have not only an induced current
in the antenna conductors but also an induced force distribution and
fluid flux distribution along the conductors. This was pointed out
by Cohen (1962), who also observed that it may not be possible to
neglect the effect of these acoustic sources on antenna impedance.

The following contains a derivation of an expression which takes into
account the effect of these acoustic sources.

For an antenna in free space it is possible to replace the
antenna conductors by an equivalent source (the induced current in
the antenna) which gives rise to the same fields as the antenna ex-
terior to the antenna conductors and zero fields inside the conductors.
Tor an antenna immersed in a warm plasma this is still possible; how-
ever, there will be additional acoustic sources.

Consider Figure 2b. From Cohen's (1962, part II) Equations 4.1 -
4.7, which contain a summary of various sources and the appropriate
field discontinuities, it 1is evident that the surface sources as shown
in 2b produce the same fields exterior to the antenna region as the
antenna and zero fields in the interior region. This is simply one
statement of the equivalence theorem for metal conductors in a warm
plasma. Thus, if one could in some way ascertain the values of the
equivalent surface source distributions along the antenna surface, it

would be relatively simple, in principle, to compute the fields
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exterior to the antenna by use of suitable superposition integrals
and ultimately determine the antenna impedance.

Consider the reaction of source S(c) with field F(c) where source
¢ is composed of the actual antenna current source IC and the appro-
priate equivalent surface sources. From (2-11) this is
<FR©),s8t) 2 = S.U( -E_c-j; _ﬂc’Es +\—{:'I:—'; —PQ'QS/no)AVQ

Ve

where VC is the volume occupied by IC and the equivalent sources.

From the boundary conditions as shown in Figure 2a, Ré = 0 as n X E; =

on the antenna surface.

" -

Q= hend = naR as A% = «f

at the antenna surface. Then
§IS Ece 3 Ay, = 5” E oI dVeup = Vin L
V. gorp
where Vin and Iin are the input current and voltage for the antenna,

respectively. The

-_ = _ _
SIS F - PQQ,/no)Ame(PQa.VC- e don,7,)Ay=0
VC vc 4
Hence
RO, s> = =V, L,
or alternatively
- A~
£, = - <PU‘-))S(C)>/J_[_H (2-14)

Ln

Note the similarity between (2-14) and (2-13). However, (2-14) also
considers the effect of acoustic sources on impedance.
It is a well known fact that expression (2-13) is a variational

expression for the input impedance of an antenna in free space. That
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is, a first order error in an estimate of the induced current along the
antenna results in only a second order error for the impedance
(Harrington, 1961). The question here is whether (2-14) has the same
characteristic for antennas in a warm plasma.
. . . . —a =a a
If trial surface source distributions JS . FS and QS are assumed
on the antenna surface, the formula for input impedance (Equation (2-14)

is

Zln ~x =< F (a.)) S(o) >/I£§ (2-15)

where Iin is the input current. Note, because of the boundary condi-

tion at the antenna surface

AV =xP

f;a and Qsa are related by the equation

A =a o A - = o
n.Fs =Ps =Y\0V5/0( QS/"(V\O

where PSa and ;;a are the pressure and velocity fields due to the
assumed surface sources jga, fga and Qsa at the antenna surface. The
impedance as calculated in (2-15) is stationary about its correct

value, as will now be shown. The reaction
= Ta T TAa,T O o
<FLQ))S(C‘)> = S\-/g—.g(‘:c'I:._HC‘\<S +VQ"FS ~EQ§ /V\o)(l.\é
/N

but at the antenna surface

- A =3
\;\\-VQ=O\PC )\(\X E.¢=='O

hence
- A & O v o
<P, stay>= =V, I, + ({8 (VA F -VLD‘_G AN B )ay,
\4 N o
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Thus

CR) s> ==\, T,, =-I 2, =<Fe),s@>

L L
Due to reciprocity <F(c), S(a)> = <F(a), S(c)>. However, it is easy
to show that <F(a), S(a)> is stationary about the correct value

<F(c), S(c)> if the constraints
KFLa), $(a) > = <L) $w) D> = FL8), 500 >

hold. See Harrington (1961, p.34l) for details.

In conclusion, the expression in Equation (2-15) is stationary
about the correct value for the antenna impedance when the boundary
conditions are as given in (2-12). It is convenient to split the
assumed source distribution a into two parts, u (for electromagnetic

on

sources) and v (for acoustic sources). That is, source a > J;
—_(

=

S

gzu

S

— — =vV_r%*
is composed of u and v where u > UJSu = JSa and v - V F; "&

v— A
VRQl=&
—u =V v . .
Note that JS ) Fs and Qs are the functional forms of the appropriate
distributions, whereas U and V are unknown constants which are to be

. e, . ~ —_ . ~ — Vv
determined. The boundary condition n - v = oP requires that n - FS =

st/ano. The constraints on source a are that
R, sa) > = < Fla)sla) >= (F(a),s(e) D
In terms of the sources u and v this constraint will be satisfied if

<R, sm)> = < Fle), s >
< Fla) s> = < F(e), Stv) >

]
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Due to the constraints on <F(a), S(a)>

CE@), S > = US Fay, T4 > = USF@), R >

< Fle), st = VW), Ry > =VKF(o), R+ Ry >

but
Fla)= UCFM)+ V(FR)+ FRY))
Therefore,

U< F(TY), T2 D4V REN FRD, TR = <R, T4
U< FEN), BYr Y > VCREN @Y, RN QY D3RRl

In order to simplify the notation, the following definition will be

used:
— E(TWy [V v
<UL)V> —<\‘(3; ))Fs +Qs >
with similar definitions for <u, u>, <v, v>, and <c, v>.

The following equations are then obtained for U and V:
U<&)u>+‘v<v)u> =<Q‘) IL'\>
USwu,v> +Vvv> = v

where <c, u> and <c, v> will be determined later.
Thus, |
Ul _ [{w\w>  <vuw <e,u>
V <w,vy <,V {&,vD
The self reaction
CFW), S = CF@), s> = CF@, UT +v RLVRY D
= < F(Q))J;“>+V<F(C), E‘sv+ Q‘V >
= U<cu> + V<evy
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On substituting for U and V it can be shown that

Z 2
<F(a))5(m)> = LGUP Y VD = 2GR VIV <0,V w,U>
2
KWHUDS LK VD =< w, V>
On applying the boundary conditions at the antenna surface, it can be

shown that

Le,u> = S\;S Ty = =% L,

w

<evs= SIS (T FY - RR/n,)dY,
vV

= SSS(*PC Q\S//0<V\o" Fc Q:/V\o) A\/v =0
\Z

Therefore,

CF@),S)> = Ve If vV [ uu> <y, v> —CWV S )

or

. ,

-z TF = &,L, Li<vvy
v~ th

WISV V> =y v>*

solving for Z .

i r

T TF vV

On substituting for <u, u>, <u, v> and <v, v> it can be shown that

Z
Z, = — Sy L

- = - - .
KRNI SRAM) R0 D
Ln- Z +

T IS <RE)+FQ)RSQY)

(2-16)

This is similar to Balmain's (1965) expression for input impedance.

In fact, the first term in (2-16) is the expression he used for
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impedance. The second term in (2-16) is the correction due to the
acoustic sources. All one has to do now is guess the functional form
of the sources as the relative magnitudes U and V have been determined,
solve for the fields due to these sources in an infinite homogeneous
plasma and substitute into (2-16) to determine the impedance. Note
that (2-16) is independent of the source function's magnitude as
expected.

In the next section these computations were carried out. 1In
order to simplify the computations, it was assumed that @i - v = 0 at
the antenna surface. This means that QSV = 0. Hence, (2-16) sim-
plifies and yields the following expression for input impedance on
taking limits in the usual way as o>0. Alternatively, one could
rederive an impedance expression by simply assuming fi - v = 0 initially.
This is much simpler and yields the same result as the limiting case,

o>0.
- - - - 2
CEEM TS RN R
- +
IS LACRENRD

(2-17)

Z.7

2.3 Transform Solution of the Wave Equations and a Formula for the
Impedance of a Short Dipole

Equation (2-17) is a variational expression for the impedance of
a cylindrical dipole in warm plasma. The antenna surface is assumed
to be rigid for acoustic waves (i.e., n - v = 0 at the antenna sur-
face). For electrically short antennas it appears to be reasonable

to assume a symmetric triangular current distribution along the
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antenna surface. However, to the best of this author's knowledge,
there has been no work done on determining the force distribution

along conductor surfaces. In fact, one no longer has any intuitive
feelings as to the general shape it should assume. Obviously, due to
symmetry it will be an asymmetric function about the center of the
antenna for a cylindrical dipole. Moreover, one must have a good
estimate as to what the actual force distribution is in order to

ensure that the expression for antenna impedance (2-17) yields accurate
results.

However, in order to obtain the actual current and force distri-
butions along the antenna surface, a pair of coupled integral equations
must be solved (see Cohen, 1962, part III). This is a formidable task
in its own right and will not be pursued any further here. In this
work a relatively simple trial function will be assumed for both the
current and force distribution along the antenna surface as shown in
Figure 3. Even though this may not yield an "extremely accurate"
value for the impedance, it should yield information about the relative
effects of the electromagnetic sources and acoustic sources on
impedance.

The problem geometry and the assumed form of Jgu and f;v are
shown in Figure 3 where 6(r-a) is the Dirac delta function and r(z+4%)
is a unit ramp. Due to symmetry the fields induced by these sources
will be functions of r and z alone and H will have a component only
in the 6 direction. Rewriting equations (2-7) and (2-8) yields the

following wave equations for EM and plasma waves, respectively,

VX B -k H = WIit- & g, FY (2-18)

z
< .
Jwwm




Gl - N I O N D B N N N B e

J, = —— S(r-o)(l-T)

-u_ | 1ZI

. —
2ma §V=a(r-a)[412+1)+2r(2+1/2)

-2r(Z-4/2) 4 r(Z-1)]

Figure 3. Problem geometry and the assumed current and force
distributions

21
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Z A =V n.e = W\
R e 219
J“)eo

In computing the reactions
Ty T TWy =V —r=Vy =v
LREIM), T > <R ), F 2y KRR ))"‘s >
it will be necessary to know only the values of EZ and v, at the

antenna surface (r = a). These can be easily determined from Equations

(2-1) - (2-4) and are

P

Ez= (/Jwer)a——(rHe)i—(e/W me)%’“ (2-20)
. 3 . S

vy: (-C/w"mc—)é—Z(He)—(60/JLL'\mnoe)§—rPl (2-21)

Equations (2-18) and (2-19) can be solved by a suitable use of

the Fourier and Hankel transforms. The transform pair which will be

used is
~ F A+ _sz _
fo) = [fhz)e r T e) drdz (2-22)
2
 F e Tm AT Ak
= _\ Y -
{52) AT SO _S,,) FGk)e AT (2-23)

(¥

Essentially there are four distinct types of fields generated
by the two assumed source distributions. They are:

1) an EM wave due to Egu

2) an EM wave due to fsv

3) a plasma (or acoustic) wave due to Eéu

4) a plasma wave due to f;v
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The contributions of these fields to the total antenna impedance will
be denoted by ZJEM, ZJP, for 1) and 3), respectively, and ZF for the
contribution due to 2) and u).

Previous authors have considered only the effects of 1) and 3)
on antenna impedance. The EM wave generated by E;u contributes
essentially only an imaginary part to the total impedance as the
antenna is assumed to be electrically short. An expression for this

is derived in Schelkunoff and Friis. It is

ZTEM= ! [Lm(l/“) ‘/J (2-24)

JwTe

Consider the plasma wave due to E;u. It satisfies the following

wave equation

VAP kP = (NS jwe,) V-

Using the transform pair (2-22) and (2-23) with m = 0 to transform

this equation gives
x -k L kA
(Eavik?)P= neha) [z-e -] o
v JwaTe, 4 iR

From Equation (2-20)
_ 2 S
E, = (&/wime) 3z 1)

and therefore
A

EZ= &Q/wzmex (J K> P, (2-26)

On solving (2-25) for §l’ substituting this result into (2-26) and
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taking the inverse transform, the following expression is obtained

for E atr = a S F ~Jk
’ X - RSO
E,(x2)= 7, ) jwe A @M Zp o (RE+E% - kD)
c2- E_J\Q,Q— J'KA] AL AR (2-27)

The reaction of this field with jgu is needed for the determina-

tion of ZJP. It will be denoted by <u, u>p

AR

- T A e = ’
uw> = SS ?:_ T AV =21 (A Z) L—z(&)z)"l‘ Z (2-28)
} fs \ S ( -
v 0
. 2 2 2 .
For the present, assume w < wp and then define kp = —up where ap is
now >0. Then if it is assumed Eeh’z >O , the k integration

in Equation (2-27) may be easily performed by using the calculus of

residues yielding for z > O.

= X I
Ez(@)z) = 0%y 1o e {(Qﬂ')z‘ \) § ]—o (\TC»)_\‘- o

T L B (L e
e e
( - - )M/ (2-29)
Tt a VY 2+ AL J\(’w—ok;'

On substituting (2-29) into (2-28) and performing the z integration,

the following expression results for <u, u>P.
~ Z
<u,w>?= - % A (f v J, (o) [e—Jé’ﬁA[}ZL

(=x) jwe L 4T “o
3
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_ - Zrx 2
-4e + S 4_*_3 —Z,QJ(&_HK; -]ck(
But
ZTP= —<Wu% 7z X j/ ¥ 35
- LX) JWe e T Jy gx g @ '°
(2-30)

[é‘JKZ**;?‘ Z A fénlr%o(?z'i 3 -2 ,K" 7_"!:, AY
- +lp

The other reactions needed may be computed in a similar manner

and expressed as integrals only over the transform variable y also

and hence, only the final results are given here. The only modifi-

cation necessary is letting ke2 = —aez for w<wp and in transforming

Equation (2-18)

- - — / —V
WeVx -kl R =Vx T - @fjwm ) Vo s

Here in using the transform pair (2-22) and (2-23), one must set

2

m 8 1, which yields (k° + y° - k_“)i, for the left hand side of the

above equation. The following expressions are then obtained for the

necessary reactions ‘e P4 2
o - = J ¥ I e) Jrs)
v - o = — e ————— Q 1
SONAD (07 Fdv= wlw%l_{g .

s % °\ ¢* e *

..jj b’ZTo(d‘cs)J',(m) [_C‘Jd'* ~ 24 _z C-J\’%o(,}'ﬂ/z.

0y ¥+ o 2 T4

2T 2 T

(2-31)
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- - — ra
CRENEY > =i, Fav= 2TL few‘.ztm
% *mte o

J(A) m & 3

( '\“*e
- S 22 L, ae el 3hiz y TTERR Y
R L N e RS
)S (.3 J—ZCY‘O\) L..c—\k:.d?l 2L
s

Cr o A
-JY’“+<><? 34/2. — 4~ Vrirxz L-fe

+ Z.TT<—

meno

-l L L/
+—-

+ S _Z’LJ\(L"'*PL ] ‘LK (2-32)

where the first term in (2-32) is due to the EM waves generated by

fév and the second term represents the plasma wave contribution. On

substituting y for ya and letting p = a/% in Equations (2-30) - (2-32),

the following expressions are obtained for w<w

Z = 2Z2TEM+ 2JP +2ZF (2-33)
where
J 2,
ZTEM= LL&.U/ ) =1 (2-34)
TrkoLLX"') f j
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| = IXPZ 4
ZTP o y T y) éW‘%

Bt el VY2 az 3

—mv
e P L3 <2 J—m//f] 0()/ (2-35)

E? F: = = <j’x 25 £ { I[ )/ZJ‘(y9 J-()C) [Ff’yl*,«dnlsz

2T e, & (y=+=ea®*

'WS’/Z)’ +2 e ‘JY +(ke0)* /2P _ ’_70(_)/

- (7 VYT [ &R T
0 _2e +2€

\}\Jz-i-L-( a z'4
% ~Jvir(a)t X/
/de} /{ 7 yT2y) L_eJ/ wen® 1P
R NENT
r 4L 3i2p e -WW SrEeaR s
_|__ /)yw,‘{(‘//'
5= 2yt et Vp Iy = 5 ), -
VY’1+(okPa)LS

[ - C:'J\/—‘L»r(x?“)._f 2P 4 o~V Gax 3/2p

- 4_C‘JY"+(-<FA)’~ /e _ 4_c-~/>”'+ (pa)®’ //jo

_g St V2p w5 - 2R GaT ) Mj

(2-36)
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where
ZO = “o/eo = wave impedance of free space

free space 'phase length' of antenna

-

o
o
"

aeg =y X -1 koz = electrical '"phase length" of antenna

Q
=
1]

(c/u)uez = acoustical "phase length" of antenna

Note that all the impedances are reactive in this case, as relatively
little radiation takes place for w<wP. The integral expressions in
(2-35) and (2-36) are both free of poles along the positive real axis
and converge to zero properly as y tends to infinity and hence are
relatively easy to integrate numerically on a digital computer.

When w>wp the expressions for the necessary reactions are the
same as those given in Equations (2-30) - (2-32) if ke2 and kp2 are
substituted for -ae2 and —aPQ. That is,

zrp= _2X 7 e PR 2L
LU-X) jwe L 4T 70 [z 23

_4_6'\1\/‘_\‘?1’,@_ 3 -—Z-'Q’%’L-la}"jotY (2-37)

jeo U/ FRI,000) T0re)
wrme L -~ 5y T P
- e

ARy gTeE vz ]AE

F(HH), R =

[, e"\h"-k} Z

_Sdo Y* T.e) T (ra) -y \'7‘-\«?"12-1
P < )
SRR

-2
SRy

L

+ (2-38)

- s == .

- ‘- -
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LFCRY)E > = AT %" f/a’ﬂwa) rEel 2 L
stmzé : ["'C.
° YER a3
¥z - N -V k™
.4 eJ zkf'si/i“_cderk e L _4_eJ —ke'/L/Z_,_ 5
_ z / 31z u)
20 [T Jar T (o) (PTG
JUJMV\OC. OW
TR g ST SRR
N2 A/
-4 e e Z.,..S"—Zl“”“—kl;z ]0((
(2-39)

Here a small amount of loss has been introduced (ke and kp are
slightly complex) and that branch of the square root is chosen which

makes

e "K'Z—Vé: >0

The loss is essentially due to the introduction of collisions in the

) Re Yl-k:‘ >0 (2-40)

force equation (2-3). The relative magnitude of this effect depends

on the ratio of the collision frequency v to the forcing frequency w.
It can easily be shown that collisions shift kP and ke off the positive
real axis into the lower half of the y plane as shown in Figure 4.

In the ionosphere the v/w ratio is usually <<l and hence, this effect
will be neglected in (2-37) - (2-38), but it indicates how the contour

of integration must be indented as shown in Figure 4, and also the
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correct contour of integration
for no loss case

ke(no loss) kp(no loss)

n: e — —O il

® (loss) ® (loss) Y AXIS
ke kp

Figure 4. Contour of integration used in determining inverse
Hankel transform
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—_— -

proper branch to choose for the square roots vV y2 - kpz, and\/yz-kez.
On consideration of the constraints on the above square roots in

the lossy case in conjunction with Figure 4, it can be shown that in

the no-loss case the square roots are for

Y < kc)P ) \’L—Qee P)z = j \/(\ree)P)z—-yL

)

z 2 — [z 2!
(>he)P ) Y"‘C\’lc ) — \jr‘(k )
)P C)F
where the positive value is taken for the square roots on the far

right in the above. Consider the integrand in Equation (2-37)
< rore resa
~rZe= 2L -l
o (V) [e" 7 Tte T +3—7-/QJ\”:\¢;~7
3
\j("—-k?

On expanding the bracketed term in a power series, it can be shown

that this function is well behaved at y = kP and hence, its integration
from O to = presents no problem. A similar argument shows that the
integrand in Equation (2-38), which is of the form
-— - -1yl Z J“_“‘—-—ﬂ
(% T,000) 00w [ =T =0 524 “VYZE (o, > 3£/Z
| € mo=Ze 51

— +

v Yz
‘ w‘e) ¢

+ Z e' 7:.(\:‘)‘9)7- ’L/l - Ij

has a singularity of the form 1/v y - ke b at ke b However, this
2

3

singularity is integrable and once again the integral from 0 to «

presents no problem. The first integrand in (2-39)
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YIZ((@) [ éJr‘.ngz‘ ZA eE e D 34/2

+ 4 <
\,r?—_kez. 3
% Tl 4
4 THRER_g TR ez v ET

is well behaved at y = ke and its integration presents no problem.

For the second term,

A e LR e

o er

% 2!
SVEE L g R e [
e

-+

it is a different story. It has a pole of the form 1/(y - kp) at

Y = kp and its contribution must be taken into account. In fact, it
o
fﬁll—dy yields
y-k
0 5]
results which are physically meaningless (e.g., the real part of ZF

was found that just taking the principal value of J

was found to be negative in some cases). The correct way to evaluate

® £(y) .
the Jo §:%;-dy is
0 KLWZ? T e rlki?

where the second term is the pole contribution and the direction of

integration around the pole is as shown in Figure 4. There was no
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problem in this case with physically inconsistent results and the
principal value integral is relatively easy to do numerically on a
digital computer.

After utilization of Equations (2-37) - (2-41) and some algebraic
simplification, the following impedance expressions wereobtained for

the case w>w

Z{._hz ZTEM+2TP+2F (2-42)
ZT\::.M: [L“U/P _‘] (2-43)

Tl L(l -X)

ZJ = Eﬁf___{s ! L(y__ Lc05(J(ka)—\’~z/f
(1=X) le 42T % %0 J(ka)L-yL

hPO‘ Ve
. Jo (Y)
- 4'C05(\‘(k?a\7‘-y1 l/p) +3]dy —JS Y .

O 2 g 3
Ve )=y
[sinWipamy 2 27) = 45 UTamy Ve)+ 2Vl ey

A = oW
_JS yJ. Ee e O
\J)/ (\@a

1 X
VRGO 5 —a TR ar e ldy

-4e

(2-u44)
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2T (1-X)%*k, L (DEN)

e o

Z
NUM = So y= T, (y) 3_.()’)4_ [cos(m 2/p )
Ve 0)*- y &

2 cos ([(ratye 3/2p) +2cosUeay™yz" Vap) -1 14

+ Sdp YZJ'@(Y) J-A()/) —\' l_(keaj“ l//c _\/ )/7\_ (ke“)z's/Zf
[ € 2€

ko~ \IYL— Qee&)z ¢

ko
€~J “leey™ Yz p _S " YRT ()T () .

8] \f(k?a)L— >/L7+
Leos (Nigasy= 2/8) = 2 cos(mamtyz st p)

+
2 —
+2 cos(\]@r&)a),:.'yz’f) _l]OL)/ _S y Ja()/)J,()/)rlq_
.ok \F}’L- (ko)™
- ,} yL-L\gF&)l L/)o 2 e_,’ )/2._ (M?C\)L B/LP_‘_Z ‘J)’z-—(hr&):* l/ZP

e

(S 2T(y) Ty
_I:] OL)/ +'J S . Y o )/ ] ) [_SLH(’Q%&)L_YL'Z/P
© \N@C(g‘ﬁ“.yﬁ

+ £ SLM\}(@%)’:)/?J S/ p - Zsin( chc\)‘:yk '/ijf’ky

e
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ks
S‘ y*Ily) T (y)
p—— [- st (e iy = 2/p) + 2.5 (n ({lew=y= 312
) /= Z/p) /= 3124
-Zsn({ Q@P&)L-y’- '/Z_Pj i)/ (2-46)
ke
DEN = IX—X j‘ ya o V) [scn(\l Z/f)
0 \Rkak

e F i Wty 2! 3/25) - 4 5o Ui gy = vp)

4 sl wsy2 lzp) + 2w giy= Yp) ] Ay

j yJ, “Cy) L e_J e m? 2P
I —X 3 -
ke O \ )’ (ke )

IV e 32 p V2 Gyt o Iy = el Vap
+ 4e — %< —4e

k.a
+ & -zm//ﬁﬂ‘/-— yg“T'L(y)

0 \[QeoL -
[_SLV\(\,QQP@L_YL 2./f> — +SLM(‘J‘:”Q.J“>Z:-Y7: 3/2‘)"’)

— <

+ 45 MUQ‘F“)L‘/Z I/P>+— 4’5LH<J@P@7‘_)/Z- ‘/Lf)“z ’Q‘,f‘){)’z '//f:’”{/
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[— cos (JT\QCMZ-_ y;’ 2/p + %cos ( (e o) y* 3/2-}3)

-4 cos(\r@co_)z_yz l ' /p —4oos(flke)ey® Vap
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-J Tr(kp"*)z T,lck,,“) (2-47)
-x  12p7

Note that in this case w>wp, there is a real part for the impedance
which turns out to be appreciable in some cases. In the above

kez =Yy 1-X kol = electrical '"phase length" of the antenna

kpl (c/u)kel = acoustical "phase length'" of the antenna

2.4 Numerical Computations and Discussion of Results

The numerical integrations were performed on the 7094 computer
facility using an available Gauss quadrature subroutine. Library
subroutines were also used to generate the Bessel functions. Several
similar integrals containing products of Bessel functions over a 0
to « range for which an exact value was known were also computed using
the same subroutines. In these cases the error was found to be less
than 1 percent. Hence, the numerical results are sufficiently accurate
to be meaningful.

The results are given in Tables 1-6. The impedance depends on
the following parameters: X (square of the ratio of the plasma
frequency to the operating frequency), ael or ke2 (the electrical '"phase
length" of the antenna), apz or kp£ (the acoustical 'phase length" of
the antenna), and p (the ratio of antenna radius to half length).

As expected the impedance scales in frequency. Temperature effects
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show up in the ratio of ae/ap or ke/kp which is equal to u/c. u is
proportional to the square root of the temperature.
In Table 1 X, apl and p are held constant while ael is varied by

varying c/u.

Table 1. Effects of Electrical Phase Length (ael) on Impedance

X = 1.25, a_ & = 20, p = .05

2JEM ZJP §£_ Zin uel c/u
32395 -3756 -32.93 j1636 .20 100
311975 -33782 ~-j1l4.8 j8178 .04 500
J J ] ]

723949 -j7563 -j29.6 316357 .02 1000
3119750 -j37815 -j1u8 781783 .00 5000
3239490 -375631 -3296 3163570 .002 10,000

It can be seen that plasma waves influence the impedance in this case.2
However, the relative effect is independent of ael (or c/u) for a fixed
apl as the impedances are proportional to l/ael. 2JP, ZJEM, and Zin
are in the same order of magnitude, but 3F is several orders of mag-
nitude, but 3F is several orders of magnitude lower and thus the effect
of the acoustic sources on impedance is negligible in this case. Note
that ZJEM is an inductive impedance for w<wp as the relative permit-
tivity of the plasma (1 - x) is less than zero.

Table 1 indicates that ueQ has no effect on the relative magni-
tudes of the different impedance contributions. In Tables 2 and 3 the
effects of aPR and X are illustrated. It can be seen that in the cold

plasma limit (c/u >>1, or apQ >>1) that plasma waves have little

2It will be shown later that plasma waves have an appreciable effect
on impedance if the acoustical phase length is approximately 50 or
smaller.
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Table 2. Effects of apl on Impedance
X =1.25,p = .05, c/u = 100
AJEM AJP ar Zln apQ(lOO ael)
j 798 -3 81.8 -j .7 3 716 60
j 958 -j 119 -j 9 3 838 50
j 1198 -7 188 -j 1.21 j 1009 40
j 1597 -j 337 -j 1.75 j 1258 30
j 2395 -j 756 -j 2.93 j 1636 20
j 2994 -3 1158 -j 3.80 j 1831 16
j 4790 -j 2690 -j 5.98 j 2094 10
j 11975 -j 11072 -j 7.36 j 895 4
j 12282 -j 11468 -3 7.27 j 807 3.9
j 12605 -j 11885 -3 7.18 3 712 3.8
j 12946 © -3 12327 -j 7.08 3 611 3.7
j 13305 -j 12796 -j 6.97 j 503 3.6
j 13685 -j 13292 -j 6.85 3 386 3.5
j 14088 -j 13820 -j 6.72 j 261 3.4
j 14968 -j 14980 -j 6.42 -j 18.3 3.2
j 15966 ~-j 16302 -j 6.09 -3 342 3.0
j 17107 -j 17821 -j 5.71 -3 720 2.8
j 18423 -j 19581 -j 5.28 -j 1164 2.6
j 19958 -j 21642 -j 4.83 -j 1689 2.4
j 21772 -j 24085 -j 4.33 -j 2317 2.2
j 23948 -j 27021 -j 3.81 -j 3076 2.0
j 47899 -j 59320 -j 1.25 -j 11423 1.0
j119750 -j 154920 -j .18 -j 35176 4
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5 10710
7573
5355
3387
2395
2284
2186
2142
2101
2061
2024
1956
1837
1694
1198
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Table 3. Effects of X on Impedance

apz = 10, P = .05, ¢/u = 100

ZJP 13
-j 5052 -3 19.9 j
-j 3742 -j 12.3 3
-3 2887 -j 7.2 3
-j 2282 -j  3.29 3
-j 2152 -j 1.82 3
-j 2154 -j 1.68 3
-j 2161 -j  1.57 3
-j 2165 -j 1.52 -j
-j 2170 -j 1.47 -
-j 2176 -j 1.u83 -3j
-j 2182 -3 1.39 -3j
-3 2196 -j 1.31 -j
~-j 2228 -j 1.19 -j
-3 2282 -j 1.06 -3
-j 2690 -j .654 -3

in

5639
3819
2461
1101
241
128

24,
24,
71.

116
160
242
392
590
1433
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effect on impedance, as ZJEM and ZF are both at least an order of
magnitude less than Zin' For wvalues of ap% ® 50 or less ZJP and ZJEM
are roughly the same order of magnitude, whereas ZF is at least three
orders of magnitude smaller. However, note that ZJEM and ZJP are of
opposite sign and eventually appear to reach some sort of resonance
where they cancel each other. This result was also evident in
Balmain's (1965) expression for impedance. In this region ZF is
about four orders of magnitude smaller than ZJEM and ZJP and will
cause only a slight shift in the point where resonance occurs. It is
highly questionable whether this would be noticeable. Table 3
essentially illustrates the same effect.

In conclusion it appears as if the induced acoustic sources
along the antenna surface have little effect on impedance when w<w
As expected, the plasma waves induced by the current distribution
strongly influence the total input impedance when the acoustical
"phase length" of the antenna is approximately 50 or smaller.

Intuitively, one would expect the same results when w>wp. This
is indeed the case as Tables 4-6 indicate. In this case the resonance
phenomena (ZJEM and ZJP canceling each other) no longer appears.
Under these conditions there is also an appreciable real part to. the
antenna impedance when .5 < kpz < 60, indicating there'is an appre-
ciable amount of power radiated from the antenna in the form of a
plasma wave. Note that both the real part and imaginary parts of ZF
are always approximately an order of magnitude less than ZJEM, ZJP,
and Zin and thus it 1s reasonable to neglect the effect of the acoustic

sources on impedance.



2JEM

-§2186
~54373
-§10931
-521863
~343725
-3109310
-5218630

2JEM

-§729
-3875
-§1093
-51458
-§2186
-j4373
-510931
-521863
-j43725
-3109310

Table 4.

ZJp

690-3180
1380-3360
3449-7901
6899-71802

13798-53603
34494-39008

£8988-318015

Table 5.
X =

ZJP

26.9+326.7
2.8+38.32
35.7-377.5
219-4201
690-5180
1961475930
4767+356936
3442+518118
1156+333989
201+380988

ZF

18.2+345.5
36+3j91
91+4227
182+3ju455

Effect of keﬁ on Impedance
.70, p = .05, kpl

= 20

708-32321
1416-5L4642
3540-711605

7081-323210

363+3910
908+32275

1817454549

p = .05, c/u

ZFP

4.01+32.36

.0961+5.0714

2.3+52.78
9.8+516.5
18.2+545.5
27.9+3119
62.3-936
.916+35.87
0
0

14160-j46420
35400-j116050
70805-3232090

Effect of kpl on Impedance

42

c/u

100
200
500
1000
2000
5000

10,000

100
2. kpz(kezzkpz/loo)
30.9-3700 60
2.9-3866 50
38-31168 40
228-31642 30
708-32321 20
1989-73324 10
4829-74031 4
3443-33739 2
1155-39736 1
201-528326




Table 6. Effects of X on Impedance

kpz @ 10, p= .05, c/u 100

BJEM ZJP ZF B,
-32525 162+376.7 3.8+713.1 166-72u35
-52678 343+3163 7.334326.4 350-32u89
-32863 55043261 10.7+340.1 561-32561
-j3092 79243376 14,2+355.0 807-32261
-33387 1085+3j515 17.9+371.9 1103-52800
-33787 1456+5690 22.3+j92.1 1478-33004
-34373 196145930 27.9+3119 1989-33324
-35355 2745451302 36.5+3160 2781-33894
-37573 4367+32071 5k, 342Uk 4422-35258

~510710 6519+33092 78.6+3357 6598-77261

-523949 15191457205 179+3819 15370-315925
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III. THE IMPEDANCE OF A BICONICAL DIPOLE IN A WARM PLASMA

3.1 Formulation of the Problem in a Spherical Geometry

In the previous section the impedance of a cylindrical dipole
was investigated. A variational expression was derived for the
impedance and hence, the accuracy of the solution is strongly dependent
on how well one has guessed the induced current and pressure distri-
bution along the antenna. In order to determine these exactly, one
must solve a pair of coupled integral equations. As noted previously,
this is generally very difficult, and thus one tends to look for an
easier antenna model to analyze.

Wait (1964) and Galejs (1966) have investigated the impedance
properties of a slotted sphere and a waveguide-backed infinite slotted
plane, respectively. Due to the close similarity between a slotted
sphere antenna and a biconical antenna as far as the exterior problem
is concerned, this antenna was decided upon. The biconical dipole in
free space has been investigated extensively by Tai (1948, 1949),
Schelkunoff (1946) and Smith (1947) by means of modal solutions. How-
ever, it is no longer possible to obtain these modal solutions in a
simple way when the antenna is immersed and everywhere in contact with
a warm plasma. This is due to the fact that the EM and acoustic waves
have different propagation constants (kp and ke) in the radial direc-
tion.

In order to circumvent this difficulty, this work will consider
a dipole surrounded by a dielectric sphere as shown in Figure 5. For

wide angle dipoles the sphere may be an adequate representation of
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Figure 5. Problem geometry
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the ion sheath formed around the antenna. Moreover, the geometry
appears feasible for experimental verification by simply encasing the
antenna in a suitable dielectric. In any event, the problem is
tractable mathematically and yields some insight as to the effect of
antenna size, ion sheath size and plasma parameters on antenna imped-
ance. In the following the dielectric region is assumed to be free
space, but a simple substitution yields solutions valid for any di-
electric. The plasma model is the same one as was used in Section 2.
The boundary between the dielectric and the plasma is assumed to be
rigid (i.e., the mean radial electron velocity is zero), which is a
physically reasonable assumption.

As shown in Figure 5, the compressible plasma occupies a space
exterior to a sphere of radius ¢ (thin antenna) or a (thick antenna).
Because of symmetry requirements, the fields will vary as functions
only of r and 6 in a spherical geometry. The resultant magnetic field
will have only a ¢ component. In the following the treatment of the
exterior problem for a thin antenna will be given briefly. A similar
treatment is given by Wait (1964) for a slotted sphere.

From (2-7) and (2-8) the EM and acoustic waves satisfy the

following wave equations in a source free region

IxVxH=ter H =20 or VH+RIH =0

VEP +-\f<:F =0

For the case of a spherical geometry with the symmetry conditions

imposed by a biconical antenna, these reduce to
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i(r‘zif + 4= (5LW66P>+\£ r*P=0 (o2
or v b 2%

It is easy to show that r R (k r) — 86 Pk(cos 6) and r R (k r)P (cos 8)

are solutions of (3-1) and (3-2) respectively wherel
R : Vo (z) . A .
h(k Y‘): (\Qﬂ Y‘) H (ke Y‘)l Hl_, (o r)
<P 5P key. S F A o
is a Hankel function of the second kind (satisfies radiation condition
at infinity) of order k + 1/2 and Pk (cos 6) is a Legendre polynomial

of the first kind. Thus, H_ and P may be represented as

¢

H4> = ;;I.‘ Z:__ b“ R‘&Uacr) 2 P&aos@-} (3-3)
i r
E‘hg)lu kl(k+0 Eh(kcﬁ)

_ C (3-1)
P = - 1 Z ® EVL(\(TP)_ | OL .é..‘-
yAING e (le+1) P 4 P"‘ (Los >
\r&fl,s,/u |rz,U’¢F )

where only odd values of k are required in the summations due to
symmetry. The remaining fields in the plasma region are derivable
from H¢ and P in conjunction with equations (2-1) - (2-5). 1In deter-

mining the terminal admittance only the values of v, and E6 will be

lNote k is an integer when it appears without a subscript; k are

. e,o
propagation constants. 295P



required. They are given in a spherical geometry by

E = - )_ P (3-5)
JWEr ar ‘b €wrr 6

V = - P) Smel\ )-— oF (3-6)
r i ¢ <
mewrsmeae ,)wmvx or
The unknown coefficients bk and ) in (3-3) and (3-4) are not indepen-
dent of each other. The relationship between the two may be determined
by invoking the rigid boundary condition v, = 0 at r = &. Substituting
(3-3) and (3-4) into (3-6) yields

V=-7 == be_ Rulker P (cos6)

me
keh3,--- ur 2 R( 'L)

. o Cn LIJOOR ‘f_@)p(cose)

JWmNE  TTRlerd) R( 9y r

! = =
where R (kpr) —Tif;s- (k r) But v, 20 atr =1 and hence,

equating the above expre5510n to zero at r = & yields the desired
relationship between each individual ) and bk because of the ortho-
gonal nature of the Legendre polynomials in the range 0 < 6 < w. The

relationship is

S = plpel Jeno Rk(u)m

(3-7)

In the following work the only field expressions required in the plasma
region once Ck/bk is known are those for the tangential electric and

magnetic fields. H, is given by (3-3) while E, may be determined by

¢ G
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substituting (3-3), (3-4) and (3-7) into (3-5). After some algebraic
simplification, the following expressions for the tangential electric

and magnetic fields in the plasma region were derived.

S b, Ro(k 1y -
H» = -4 N CU— K< <<;{) = P (O x4 _
& % — = e /2P (eees) (3-8)
s o ZT ke (ke+1) Kktkeli) 36 R

—))|IA

2 5 b Rys Ceer)
F_=-3i% e wileV ) S P ags4)
+ 1e? n, Sy bh_ R.le.r) N (3-9)
> Z £ 2 R (cosd)

3 2T | - A\
m € e° UJ r k= I) 3) e LkPLEn(kF L) KKQKTL))
where & = Vuo/s = wave impedance of the plasma when replaced by an
equivalent dielectric of permittivity e.

3.2 The Thin Biconical Dipole

Equations (3-8) and (3-9) are expressions for the tangential
electric and magnetic fields in the plasma regicn (II) as shown in
Figure 5. Because of the similarity between the problem treated here
and the free space problem treated by Tai (1948), his notation will be
used where possible. The modal solutions in the dielectric region,
which satisfy Maxwell's equations and the boundary conditions Er =0

at 6  and m-6 _, are as given by Tai (1948).

- (=) Sk, (r-4)
E = Y% [U+Kf)e ° f-kn) e ]
¢ rswme
— £ — Oen S|(k Y‘)
J To —r —— h 3 -
—_— 2 £- _ (3-10)
- Zn ZTaln+) S (e L) 3% (eos &)
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Ve (r-4
Hq>= L G+ey)e - L_>u KYe) e sl ).j

rsihO-
(3-11)

h(k V) 3
Snlle, L) 9

_|— —
‘ Lh LTWH-Q o n (@06

where V is a constant which is proportional to the input voltage at

the apexes of the cones, Yt is the terminal admittance, K is the
characteristic impedance of the cones (the impedance of an infinitely
long antenna which is = (Zo/ﬂ). loz cot %g-), Ln (cos 8) is a Legendre

polynomial which vanishes at 60, m/2, and n—eo (n is not an integer in

general), and

Salk ) = (e, ﬂ/ T, Uer)

S, S,(ke r
(\z ) = oL Vaor) n ( >

where Jn+1(k0r) is a Bessel function of the first kind of order n + 1/2.

The a are unknown constants which are to be determined. Matching the
tangential magnetic field (equating (3-8) and (3-11) and integrating

from 90 to n-eo ylelds an expression for Yt in terms of bk

Y, = —— S (\bb_> l 0 P_(cos &) (3-12)

4_71-4_'\’4 T O

H"J\.))“‘

Once bk is determined Yt and also the input impedance may be easily

determined. The simiiarity between Equations (3-8), (3-9), (3-10),

(3-11) and Tai's equations 1, 2, 4, 5, 10 and 11 indicates that b, may

k
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be solved for in a similar manner to that used by Tai for a bicone in
free space. This is, indeed, the case; however, it is much easier to

solve for bk by immediately invoking the small angle criterion.

Matching H¢ from 8  to m-6_at r = 2 yields

Vo (ZKY) - ~ Z - 2 Laleose)=

Lsine - 2T nin+) ¢

b
e
—_ S o
Z ZTklle+H) ae Fle (¢0s6)
L k“) )Ql,
Multiplying by sin (9)2&@%%25_91, using orthogonality properties of

the Legendre functions and integrating from eo to n-eo yields

M A.
o (L2 7 2R Lmeld
—Ms Vb'bs)ttl %o
where u = cos (6). But the numbers m approach 1,3,5,... as eo+o and
the functions Lm(u) become very much like Pl(u), Ps(u),... except near
So and w—eo. Hence, a - bk’ m > k as 60 > 0.

Matching Ee from 60 to n-eo at r = % yields

vV Z ' " ‘
Z l ° - Zo & Sh (koi) _A_ Ly\ (Q‘DS e_)
Lsine ( " Z.Tn(\q{-l) Sn(koi) o6

= — & — b |
) 2 _oe Rl 4) iP.a(C‘-os'e')

A ves, 30 ST R (e g) 9%
+ i<, R (kpl ) 3
\5pP
mee, wLE P, cas 6)

(kp £ R ) =R, (o)) e "

,)J“l



52

. . . 0 . .
Multiplying by sin égéé%SE__l3 where s = 1,3,... and integrating
the left side from 60 to n—eo, the right from 0 »~ m (as E6 = 0 on the

spherical caps) yields A g

O Snl (Ve L) s 7
) B L) sis+) | L, () Bl du
4V Eb/i (cos6,) = ] Zo Zh" ZTn(n+1) S, (\COL) ’/j‘(o |
_ 3 Zb ’
3 s Rstkeﬁ) ZS(S"'/) chna o
Ts (s+! =
ZTs ) Es(keﬁ) 7s +/ mee,wL 2T »

s Clep L) . Zs(s+1)
ek Ry Ceo k) =R (4eod) 2541

but as before in the limiting case of a thin dipole n ~ s, Ln > PS, as

GO -+ 0 and the above equation becomes

= _K@ ssled) 1, o2 b,) Rele L) _1__
S,Uet) B2, SV Igeg) 2sv

vV

- J_Gfi‘i___ Q_b_5_> RsUepd ) s(s+1) ,
meewdZ, TV S (e f R, e t) - Rllept) #5 O7H)

Solving (3-13) for b

=

K and substituting into (3-12) yields

- — 7 e+
\/t — Z a A (3-14)
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where

i Releed) s (e )
Z (k L) Sk(\\@ok)

- X Rulied) (e19)
X L (k1 R Cept) ~Ricllet)

If all temperature effects are neglected, i.e., the plasma is
replaced by a dielectric with permittivity €, only the first two terms
would be pfesent in Ak. Hence, the third term in'Ak represents plasma
or acoustic wave effects. Note that the first two terms in (3-15)
check with Tai's equation (31) as expected. As they stand, (3-14) and
(3-15) yield no immediate information. A computer was used to sum the
series and the results are given in Section 3.4. However, it is
possible to get a gross estimate of the impedance behavior by looking
at some limiting values for kel, kpl and kol,

Case I k £, k 2 and k # <<l
e o P

In this case the limiting values of the spherical Bessel functions
are as given in Abramowitz (1965).

,’{_ Tm'/,_(Z) o = y Z2—>0

< [¢3:5 2 (XL n+l)

Jg_ﬂj ym,./z(Z} L — 138 i (2n-1)

2{“*4 ) z=0
[T (%)
il (L — 138 (z2_n-1)
2z by ) ~ ( , 20

ZH+/
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Using these values it is easy to show that

N _Z—-L_(—_k_>_ kel o X =
S N L A (3-16)

All of these terms are approximately the same order of magnitude except
when X ® 1. Hence, the acoustic wave has a strong influence on impe-
dance under these conditions and appears to be dominant near the plasma
frequency (X * 1). However, this treatment has neglected the effects
of Landau damping and its validity is questionable at frequencies near
the plasma frequency.

Case II k %, k & <<1, k & >>1
e 0 P

For large arguments

Too,(2)~ [ 2 T cos(z= 2T
nl/z_) 7z ( Z >

In this case it can be shown that

ke =/
Akwié(— Sy kel X eller) 1)

Z,° e (. k L (1= X) VQE)Q\@FL

and since kpl >>1, the third term will be negligible compared to the
others, (i.e., this is the cold plasma limit, as kpl >>kel implies

c/u >>1).
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Case III k %, k 2, k & >>1
e o p

Here one finds

=/

o U E (L)) otk g- T e (le
AL 120( 1) - cot (le L T)-{—)( (lerd)
U=-X) ke, L kel

and thus the third term will be negligible. Hence, acoustic effects

are negligible for electrically large antennas (kez >>1).

3.3 The Thick Biconical Dipole

As in Section 3.2, expressions for the tangential electric and
magnetic fields in regions I, II and III as shown in Figure 5b will
be required in order to determine the antenna impedance. The field
expressions for region III are the same as those in Equations (3-8)

and (3-9) if % is replaced by a. b, is also replaced by d, in this

k k
case. Hence, in region III
J R
T .‘__ > k—i:l Sulecn) S (P L¢0s6)> (3-18)
¢ Znr h )“. ) R\QQ\QeC‘) QG—
- _ _iz _ 4 ~
Se Zf—Tr-r - \aai ) Sk g Puleos &
‘Q:I) 3):“ + KKU&J‘) é'e'
+ i X Z — A (3-19)
J — e JUQ V‘) P(COSQ-)

| =X taorz k;|,3)wr”- (kpa.ﬁ (e 0= K\o.w*?cq)se

In region I the field expressions, which satisfy the boundary
conditions and symmetry requirements imposed by the biconical antenna,

are given in Tai (1949)
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Ep = Zolo [ stnle(un) - jeos 40
ZTr s tne-

_ Ze o S, Ugr)

J h(:+— n 9 Ln(c_ose-> (3-20)

ATy " ) ShU’%L) Ay

Ho= Zo [sinle,-n) = jn cos kaldr) |

¢ LT rsiné

_ \ — An Sn(\fﬁo‘(\\ _é_L (C_OS ‘6‘) (3-21)

Z—T—F—f Zh_ Y\LV\H) Sn(kol) oG n

where all symbols are as previously defined and IO is a constant pro-

portional to the antenna input current. Similarly in region II

Hy= -+ Z. kum)[-EH-(RKU‘""“VE\&V%U%‘

Q
+C (Swi\to\f‘)/su(\éa L))] Se- P (eos '6'9 (3-22)

E = - 18 5 — Lo (R Geor) /R U, )+
< ZTV‘ \fi_:l)s)'u‘zo&*—‘) VL( “ )

¢ (S (/s 0) | & Peleos ) o2

Equations (3-18) - (3-23) contain four unknown &, b, , ¢ and d, . Two

of these may be eliminated on applying the appropriate boundary
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conditions at the dielectric-plasma boundary, r = a. The continuity

of H, implies that

¢
co s o D Tl g Selkee) T,
2To g o) Ry (o k) Sl L)
%_Pk_(cos e) = -_L 2_ Ao Rilkees)

d e (e -
2T \e=l)3) 014 ) Ri(kee o)

)
3o P\,_ (Cos 9—)

But due to the orthogonality properties of the Legendre polynomials

this reduces to

d - e S o) K, (legat)
e _ = T, ——
S, (e, L) R, (e &)

Similarly the continuity of Ee at r = a ylelds another equation

(3-24)

[£ Rllt) - X elen) 14

z, B\ Ve |-=X \r&o&QtPa R, U .a) —Eh(\t?@)

- k(\rc a) ](‘._ _ \0 (3-25)
S Sl 4) [ R, e L) ]

On solving for ) in terms of bk one finds

¢ fo =V, = (RL ey _ Ryle) 7 >/( Sy ()
R (e, t) R, (e, L) Siele, L)

+ Sie(®) Nm) (3-26)
Sie Oy )
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where

Nk: -i‘ M _ X eler ) Kl ) (5-27)
R (o) U X )k o (e on K Gy o) = Emﬁkp“'))

The second term in the above expression for N

| represents acoustic

effects. Equating it to zero is equivalent to replacing the plasma
with a dielectric of relative permittivity (1-X). On substituting
kak for =N in (3-22) and (3-23) and rewriting (3-20) and (3-21) for

convenience, the following expressions are obtained for the tangential

electric and magnetic fields. In region I

E_e_‘—" =z Lo [K)/t sen ko(ﬁ'ﬂ ~) aos \<OQ\-V\3]
2Ty Stnb-

S Sa lear) 3 o
Z‘H“r Zv\— nntt) m) éreL”st ) (3-28)
Ho= S [stnkdor) — Ky, cos lellor) |
ZTvrsint
—_\— Z M é_ L“(LOS e-) (3-29)
ZTe 7 V\Lm—l) S (e t) &

In region II

E,= "ife 7 Be [ R ()
,Z_TV‘ V." 3 ||K(h+l) ‘ZVLK\’L /L)

Sy (eor) > (3-30)
e T ée_P (cos &)
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H, = -1 = R (legyr
¥ £Tr - \e(\é+ ) [ )
kiZ\rg)lu EthU@olL)
S .
+\/h o (leev) é \(L(Qos '6‘) (3-31)

S (e, )

These equations are the same as Tai's (1949) equations (1) - (4) except
for the additional Vk term in (3-30) and (3-31). On letting a tend

to infinity and introducing a small loss into the medium, it may be
easily verified that Vk tends to zero, thus yielding Tai's (1949)
result. At present a method to determine the unknown constants a

and bk is unknown except for the case of the very thin dipole treated
in Section 3.2. However, an integral equation may be easily derived
for the tangential electric field at r = 2. Using this integral
equation, it ig possible to derive a variational expression for Yt'
Due to the similarity of Tai's equations (1) - (%) and Equations (3-28)
- (3-31) only a brief outline of the procedure is given here.

For convenience in writing, the following definitions will be

introduced

P cos @)= S Rleme) L ((eos@)= & 1, (cos©)

M, ey = Emlial) () S0 (et 0.1 1)- Seled

B, (e, L) S, (e, L) ) S, (k)

€,

/

P (Los &) sthéde

D\_/—)

T
g Lh (Cos 9) S“’\e‘obe‘ I
©

]
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The continuity of the tangential electric field at r = & yields

the following equations

. b = € <66,
=) Zo Z = l—_M\:‘Vw_O\m_] P\,,' ={L1w-) peeel (3-32)

\tﬂ(\ﬂﬂ— O (] L\ev‘WI
2T o3, y + se
and
‘ ‘ — I
—)Z Lo 2 6o N L, = E..(6) (3-33)

v\(m»l)

ZTL sin€®  2T4 W
where Ea(e) is the tangential electric field in the aperture 60 <9 <
m-6_ at r = £. Multiplying (3-32) by PP'(cos 9) sin 6 and integrating

from 0 to 7 and applying the orthogonality properties of Pk'(cos )

over this range yields
o

T
— - | |
e \or[M\r +Vr Or]Irvzg L—"”(-G.)P\r‘ (¢ 0s6) stn B d6- (3-3u)
ay's 'Y

where r = 1,3,...
Integrating (3-33) from So tom - eo yields a relationship
between I and E_(8)
o a
T-&,
T = 34 _
©

Multiplying (3-33) by Lm'(cos #) sin 8 and integrating from eo to ﬂ—eo

yields ‘ “1_6%
o= JETA g\: (B) Ly (Cos 8) siné 46~
" 2o Nuwlwmm e-:k m Los stn (3-36)
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On matching the tangential magnetic fields in regions I and II
(equating (3-29) and (3-31) at r = & and substituting for br’ Io and
a from (3-34) - (3-36) the following integral equation for Ea(e)

results

T, |
_X_-e—__ g E,.&)de - L Z L (cos @)
ZT siné o, Zo " nm+)N, Tun
T-6,
E . (&) Lo (Cos€) Sihe J& = _J_' Z
'G'o E LL’ e
T4,
Vv ' |
Ll+ \e—.] R (cos€) g E“LG)P\L'QOS&)SM 6 d e (3-37)

Multiplying (3-37) by Ea(e) sin 8 and integrating from 90 to m - 60

yields the variational statement for the terminal admittance Yt in terms

of the aperture field Ea(6).

Y, = 42r | {Z'

2, [ Sm_;aemﬂl e
-8
™, | | ] 7:2- 1+V,
) E. @)L, (Cos8) sin & 4 \e’")s)”k(mn)m”v O )T,
T-€, z
[ S@ S8R, (cos®) siné M]
o

(3-38)




62

To evaluate Yt as given in (3-38) an appropriate trial function
must be chosen for Ea(e). In theory one could expand Ea(e) in a com-
plete set of orthogonal functions and solve for the expansion coeffi-
cients using the Rayleigh-Ritz procedure. The following set immediately

suggests itself

— ! .
E (&)= — Ao -~ Z,A“Lh(COS t‘) (3-39)
\

n

Note (3-39) gives rise to a field of the same form as in (3-28). In
order to simplify the mathematics, consider only the first term in
(3-39) as a first approximation to Ea(e). In order to justify this
assumption one could truncate the series in (3-39) after a finite
number of terms and compare the results. However, this is a tedious
process at best. Tai (1949) has found that the above approximation
yields reliable results for wide angle biconical dipoles in free
space.

On the other hand, Galejs (1966) has found for a waveguide-backed
slotted plane that the inclusion of a second trial function which
varies over the waveguide aperture in the same way as the surface wave,
supported by this geometry in addition to the principal waveguide mode
as a first trial function, has a pronounced effect on the slot admit-
tance. However, the results for a thin antenna and a thick antenna
using the above first order approximation are in excellent qualitative
agreement. Acoustic effects are also quite noticeable, whereas Galejs
found that the principal waveguide mode alone as a trial function had

no appreciable acoustic effect in many cases. This is partially due
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to the fact that for kpa >>1 acoustic effects are slight. The slotted
plane problem is thus similar to a bicone of infinite radius. For
very large bicones (kpa >>1) the surface wave contribution should be
considered. On substituting Ea(e) = —Ao/sin 6 into (3-38), the

following first order approximation was obtained for Yt

AR

TKE \op3, €Ut MV O T

If Vk is zero, this expression is identical with Tai's (1949) equation

(19).

(14V,) 2 P (cos 42) (5.10)

(3-40) is the first order approximation for Y- Just as in the
case of the thin dipole, limiting values of kea, kpa and koa yield
some insight as to when acoustic effects are important. Acoustic

effects influence the impedance only through the expression for Nk

(3-27)

2. (leew) X el )) Ry, Gepan)

————

% (e a0 B (=X) Ve o (»quak‘(kpa)—»’ikwfa))

oo 2
hlk.—- ;g?
o
If acoustic effects are neglected (that is, the plasma is replaced
simply by a dielectric with relative permittivity (1-X)) the only
changes in the above solution for Yt are that the second term in the
expression for N, = 0. Consider three cases as in the case of a thin

k
dipole. In Case I, kea, kpa, koa << 1; then by analogy with (3-16),

" Z _le _Jﬁ_— E: (
NnN { io( —\a—&> * =X e o~
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and the acoustic waves strongly influence the impedance as both terms
are the same order of magnitude. Similarly for Case II, kea, koa << 1,

ka»> 1,
P

IS E A ARl

e Ve o | =X Ve k;P&

Now the second term is much smaller than the first and can be

neglected. For Case III, k a, k a, k a »>> 1,
e P o

Voo 2 X ' Uerl)
Ve &Z_O( |\ + CI—X)\?-D& \zPC\.

and as in the thin dipole case acoustic effects are negligible in this
region.

3.4 Numerical Computations and Discussion of Results

Equations (3-14) and (3-40) constitute formal solutions for the
terminal admittance of thin and wide angle biconical dipoles. Once
the terminal admittance is known, the input impedance may be determined
as in Schelkunoff (1952). In a manner similar to that used in deter-
mining the behavior of Yt for limiting values of koa, kea and kpa it
can be shown that the individual terms in (3-14) and (3-40) behave as

l/k2 if k »> koa, kea and kpa. Since the series

o s°
Smx 2 T2

Vo= | = |

to about 1 percent, the series in (3-14) and (3-40) were also summed

by taking the first fifty terms in the series. The series were summed
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on a digital computer which was programmed to print out each term and
the total sum. For values of kpa < 25 the fiftieth term in the series
was at least two orders of magnitude smaller than the sum of the first
fifty terms, which is a quite satisfactory percentage of error. In
general it appears as if the number of terms necessary for convergence
is ® 2 kpa. However, it has been shown previously that acoustic effects
are negligible for large values of kpa and thus the first fifty terms
in the series again gives satisfactory results. Thus, in all the
graphs there is a range, in which 25 < kpa < 50, where no values were
computed., However, this presents no problems as the general trend of
the situation is indicated quite clearly by the data obtained over the
other ranges.

The primary difficulty in summing the series lies in computing
the spherical Bessel functions to a sufficient degree of accuracy. A
procedure outlined by Weeks (1958) in which a straightforward upward
recursion scheme is used to compute the Yn+;_and a downward scheme for
the Jn+%_was found to yield excellent results.

The results are presented in Figures 6-18. In all cases Yt was
found to be sensitive to small changes in kol as this corresponds to
a large change in kpl. To improve the readibility of the figures, only
a few oscillations are shown on each graph. In all of the figures the
subscript a denotes the inclusion of acoustic effects, while the sub-
script d denotes replacement of the plasma by an equivalent dielectric.

Figures 6 and 7 are plots of K2 Yt and Zin versus kOR for several
values of X. The ratio of the velocity of light to the acoustic

velocity in the gas is 100. It can be seen that as X approaches one
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Figure 7. 2, =R + 3 X for a thin biconical antenna
in a,d a,d

radiating into a warm plasma, K = 500 ohms




(i.e., the operating frequency of the antenna approaches the plasma
frequency), acoustic effects are more pronounced. Only values of X
less than one were considered, as no appreciable radiation occurs for
X greater than one. The real part of K2 Yt(G) is markedly changed in
all cases if koﬁ < .3; the imaginary part (B) also undergoes a slight
change in some cases. However, even though Ga may be several orders

of magnitude greater than G Ga may still be negligible with respect

d)
to Ba' Furthermore, even though Ga and Ba may be the same order of
magnitude, Ra (the real part of Zin) may be much smaller than Xa (the

imaginary part of Zin) due to the relatively large value of K for

thin dipoles. For example, when X = .7, the maximum values of Ga/Ba

2t

(.4) and Ra/Xa(.Ou) occur when kol .05, k. & % 2.5. In this case Ra

p

appears to be large enough to make acoustic effects measurable. In

many other cases, however, even though Ra >> Rd

68

(indicating the acoustic

power radiated is much greater than the EM power), it is still so small

with respect to Xa that the effect will not be observable.

Figures 8 and 9 are similar to 6 and 7. However, acoustic effects

are reduced over this range of kOQ as c/u has increased by a factor
of ten (we are approaching the cold plasma limit). In fact, now the
maximum value of Ra/Xa (.025) occurs for X = .7 at kOQ ~ .01,
kpl * 5.5, However, by going to a smaller value of kol this would
increase. Acoustic effects seem to be most pronounced if 1 < kpl <3
as is indicated in the following.

From the previous comments, it is obvious that antenna impedance

depends strongly on the acoustic length of the antenna in addition to

the electrical length. In order to illustrate this dependence

- G - em S8 e = e am S =

oS OGN E ok 2 9 =
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explicitly, Figures 10 and 11 were plotted. They are plots of K2 Yt
and Zin versus c/u (which is equivalent to varying kpl) for several
fixed values of kol. For kol = .02 the maximum values of Ga/Ba (* 1/3)
and Ra/Xa (* 1/20) occur for c/u ® 110 or kpl 2 1.20. At c/u = 1000,
Ra/Xa ¥ 1/70 and Xa * Xd, hénce, it appears as if acoustic waves will
be negligible in this case for c¢/u > 1000. For kok = .2 the maximum
values of Ga/Ba (* 1/3) and Ra/Xa (® 1/20) occur at ¢/u * 11 or kp2 =
1.20. In this case acoustic waves are negligible if c¢/u > 100. For
kol g 2, the impedance exhibits acoustic effects only for values of
c¢/u < 10. In conclusion it appears as if acoustic waves have a
noticeable effect on impedance if kol < .5 and .5 < kpl < 10., as for
a thin antenna 1/50 < Ra/Xa < 1/20, over this range, Ra >> Rd and

As noted previously, the high characteristic impedance of a thin
antenna may lead to a seemingly significant change in Yt and no
appreciable change in Zin' Thus, it appears as if a wide angle antenna
will be more sensitive to acoustic effects. This is indeed the case
as Figures 12-18 indicate. The qualitative changes are the same,
however. For the thin antenna the maximum value for Ra/Xa was approx-
imately 1/20. Figures 12 and 13 are for a wide angle antenna of
half-angle eo = 66.06°. In this case for X = .7, a = &, maximum values
of Ga/Ba(>l) and Ra/Xa(: 1/2) were obtained. As before, for values
of koz > .01 increasing c¢/u from 100 to 1000 caused a decrease 1in
acoustic effects. However, even for c/u ® 1000, Ra/Xa = 1/20 for

k 2@ ,01.
o
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Figures 12 and 13 also show the effects of an ion sheath. The
sheathed antenna (a @ 1.2 %) has a lower Gaand R > indicating a decrease
in the amount of acoustic power radiated. The curves are also smoother.
Figure 14 contains more detailed information on sheath effects.

14 a,c,d indicate a reduction in Raas the sheath size increases as
do Seshadri (1965), Galejs (1966) and Wait (1964). In ldc an increase

in sheath size causes Xa to approach X 14b illustrates sheath effects

a
for a case where acoustic waves are negligible. The effects are quite
different in this case.

Figures 15 and 16 are similar to 10 and 11; however, acoustic
effects are more pronounced. Note that acoustic waves also cause a
quite noticeable change in Xa for certain parameter ranges. For a = &,
k & = .02, 1/20 < R /X_ < 1/2 if 50 < c/u < 1000 or .55 < kpz < 11.

A similar curve plotted for k02 = .01 (Figures 17 and 18) shows 1/20 <
Ra/Xa < 1/2 if 70 < ¢/u < 2000. 1If kOQ = .2, the upper limit c/u in
order for Ra/Xa > 1/20 is c¢/u < 100. 1In conclusion it appears that

there will be appreciable acoustic power radiated (i.e., Ra/Xa > 1/20)

if .50 < kp2 < 10 for this particular antenna.
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IV. CONCLUSION

This work presents solutions for the impedance of some dipole
antennas in a warm plasma. The effects of antenna size, plasma para-
meters, ion sheath size and induced acoustic sources at the antenna
surface were investigated and extensive numerical results presented.
A linearized hydrodynamic description was used for the plasma with
temperature effects accounted for by a scalar isotropic pressure. The
effects of collisions were neglected because of the resulting simpli-
fication in the numerical computations. However, this should cause
little change in the overall effects of "plasma" waves on impedance;
of course, it will change the quantitative results. The results, of
course, are applicable only when the effect of collisions is small.

In Section 2, the effects of the induced acoustic sources along
the surface of a cylindrical dipole on impedance were determined. To
the best of this author's knowledge, these effects have not been pre-
viously investigated. A reciprocity theorem was derived for fields
in a warm plasma. On assuming an impedance boundary condition (A -+ v =
aP) at the antenna surface, a stationary formula was derived for the
antenna impedance. The stationary quality of the expression is due
to reciprocity. The primary benefit of this type of formulation is
that one needs to only guess the functional form of the current and
force distributions on the antenna surface as the expression is
independent of relative magnitudes. If one attempts to use the
"induced emf" method to compute impedance in a warm plasma, it would

be necessary to specify both the functional form and the relative
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magnitudes of the current and force distributions for a rigorous
solution. As expected, neglecting the force term gives a result exactly
the same as the "induced emf" method does if the current distribution
is real.

The results obtained in Section 2 indicate that for the type of
force distribution used, its effects on impedance are quite small.
However, the '"plasma" wave due to the assumed triangular current
distribution had a marked effect on impedance in some cases. Even
though the antenna was electrically short, it had an appreciable
resistance in some instances because of the power radiated in the
"plasma" wave. Broadly speaking, this occured if w>wp and .5 < k_& < HO.
The imaginary part of the impedance was also affected as long as
kpl < 40 (or apl < 40) if w<wp. These results are quite consistent
physically as a cold plasma corresponds to the limit kpl > o,

The staticnary formulation yields no information about the induced
sources. Due to the strong dependence of the impedance on the assumed
form of the induced source distributions, a different antenna model
was used for obtaining more detailed results. Section 3 contains an
analysis for a biconical dipole. This antenna lends itself quite
nicely to mathematical analysis in free space. It is possible to do
the same in the case of a warm plasma if the antenna is encased in an
insulating sphere of dielectric material. As such, this model appears
to be feasible for experimental verification. This model is also a
possible (albeit highly idealized) representation for the actual ion

sheath formed about the antenna for a wide-angle bicone.
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For this model it is relatively easy to expand the fields in the
antenna and plasma region as a superposition of suitable "plasma" and
"EM" modal solutions. Application of suitable boundary conditions
yields a doubly infinite set of equations which are soluble in the
limiting case of a very thin antenna. Tor wide-angle bicones an inte-
gral equation was derived for the tangential electric field in the
antenna aperture. From this integral equation a variational expression
was derived for the terminal admittance. In general, the impedance
behavior of a biconical antenna in a warm plasma may be summarized by:

1. If acoustic effects are noticeable, they become more pronounced
as the operating frequency of the antenna approaches the plasma
frequency.

2. If keﬂ << 1 and kpl << 1, the input impedance is essentially
reactive but may differ from that of the same antenna in an
equivalent dielectric.

3. If ke£ > 2, acoustic effects are negligible for c/u 2 10.

4. The occurrence of acoustic effects depends strongly on c/u
(or kpz) and kel. In general they affect the resistance
significantly if kel < 1l and .5 < kp% < 20, and the capacitance
if k & < 50,

p- =

5. An increase in ion sheath size causes a decrease in Ra (also
in the amount of acoustic power radiated).

6. Although acoustic effects appear to strongly affect Yt’ they
may have no significant effect on Zin if the characteristic

impedance of the antenna is large.
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It has been shown that "plasma' waves cause quite a marked change
in antenna impedance. Induced acoustic sources, on the other hand,
appear to have little effect on the impedance of a cylindrical dipole.
However, it would be interesting to compute the impedance of a slotted
sphere antenna by means of the variational formula derived in this
work and observe the effect of the acoustic sources on impedance. In
this case it appears as if they should have a noticeable effect. It
also appears as if the variational techniques developed herein could
also be applied to scattering problems in a warm plasma. Here it
would also be of interest and importance to observe the effects of

the induced acoustic sources on the scattered fields.
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